首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   755篇
  免费   121篇
  国内免费   106篇
测绘学   60篇
大气科学   78篇
地球物理   278篇
地质学   190篇
海洋学   279篇
天文学   36篇
综合类   29篇
自然地理   32篇
  2024年   2篇
  2022年   4篇
  2021年   8篇
  2020年   17篇
  2019年   15篇
  2018年   13篇
  2017年   28篇
  2016年   30篇
  2015年   16篇
  2014年   35篇
  2013年   61篇
  2012年   37篇
  2011年   36篇
  2010年   53篇
  2009年   58篇
  2008年   55篇
  2007年   68篇
  2006年   44篇
  2005年   39篇
  2004年   38篇
  2003年   45篇
  2002年   31篇
  2001年   21篇
  2000年   29篇
  1999年   30篇
  1998年   27篇
  1997年   17篇
  1996年   8篇
  1995年   14篇
  1994年   22篇
  1993年   18篇
  1992年   11篇
  1991年   7篇
  1990年   8篇
  1989年   12篇
  1988年   5篇
  1987年   9篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   2篇
  1973年   2篇
排序方式: 共有982条查询结果,搜索用时 250 毫秒
11.
由于在平衡计算效率和精度上具有优势,Boussinesq相位解析数学模型研究不断取得突破,已成为波浪和水流精细化模拟的较优解析方式,为海岸工程、环境、地质等问题提供了实用和高效的研究手段。本文对已有Boussinesq类模型的研究进行了评述,深入探讨其重要发展、实际应用和理论瓶颈,从高阶非静压修正、GPU准三维高性能算法编译、波浪破碎和泥沙运移沉积等4个方面提出未来可能的科学突破方向。  相似文献   
12.
Large proportions of rainwater and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The distribution of groundwater ages with depth is a key feature of these flow dynamics. Predicting these ages are a strong test of hypotheses about subsurface structures and time-varying processes. Chlorofluorocarbon (CFC)-based groundwater ages revealed an unexpected groundwater age stratification in a 0.47 km2 forested catchment called Svartberget in northern Sweden. An overall groundwater age stratification, representative for the Svartberget site, was derived by measuring CFCs from nine different wells with depths of 2–18 m close to the stream network. Immediately below the water table, CFC-based groundwater ages of already 30 years that increased with depth were found. Using complementary groundwater flow models, we could reproduce the observed groundwater age stratification and show that the 30 year lag in rejuvenation comes from return flow of groundwater at a subsurface discharge zone that evolves along the interface between two soil types. By comparing the observed groundwater age stratification with a simple analytical approximation, we show that the observed lag in rejuvenation can be a powerful indicator of the extent and structure of the subsurface discharge zone, while the vertical gradient of the age-depth-relationship can still be used as a proxy of the overall aquifer recharge even when sampled in the discharge zone. The single age stratification profile measured in the discharge zone, close to the aquifer outlet, can reveal the main structure of the groundwater flow pattern from recharge to discharge. This groundwater flow pattern provides information on the participation of groundwater in the hydrological cycle and indicates the lower boundary of hydrological connectivity.  相似文献   
13.
Atmospheric cyclones with strong winds significantly impact ocean circulation, regional sea surface temperature, and deep water formation across the global oceans. Thus they are expected to play a key role in a variety of energy transport mechanisms. Even though wind-generated internal gravity waves are thought to contribute significantly to the energy balance of the deep ocean, their excitation mechanisms are only partly understood.The present study investigates the generation of internal gravity waves during a geostrophic adjustment process in a Boussinesq model with axisymmetric geometry. The atmospheric disturbance is set by an idealized pulse of cyclonic wind stress with a Rankine vortex structure. Strength, radius and duration of the forcing are varied. The effect upon wave generation of stratification with variable mixed-layer depth is also examined.Results indicate that internal gravity waves are generated after approximately one inertial period. The outward radial energy flux is dominated by waves having structure close to vertical mode-1 and with frequency close to the inertial frequency. Less energetic higher mode waves are observed to be generated close to the sea floor underneath the storm. The total radiated energy corresponds to approximately 0.02% of the wind input. Deeper mixed-layer conditions as well as weaker stratification reduce this fraction.The low energy transfer rates suggest that other processes that drive vertical motion like surface heat fluxes, turbulent motion, mixed region collapse and storm translation are essential for significant energy extraction by internal gravity waves to occur.  相似文献   
14.
A spectral method for modeling high-frequency electromagnetic waves in axisymmetric geometry is proposed.The method is based on the expansion of the solutions of Maxwell’s equations in Laguerre functions in the time region.The spectral method is used to solve Maxwell’s equations for both 2D media and stratified media. In the case of stratified media, a Fourier–Bessel expansion in the radial variable is used. The effectiveness of the spectral and finite-difference methods is compared. Harmonic solutions and solitary solutions by the Laguerre method are considered, and the dynamics of monochromatic and broadband electromagnetic pulses are examined.  相似文献   
15.
Unsteady two-dimensional Navier-Stokes equations and Navier-Stokes type model equations for porous flow were solved numerically to simulate the propagation of water waves over a permeable rippled bed. A boundary-fitted coordinate system was adopted to make the computational meshes consistent with the rippled bed. The accuracy of the numerical scheme was confirmed by comparing the numerical results concerning the spatial distribution of wave amplitudes over impermeable and permeable rippled beds with the analytical solutions. For periodic incident waves, the flow field over the wavy wall is discussed in terms of the steady Eulerian streaming velocity. The trajectories of the fluid particles that are initially located close to the ripples were also determined. One of the main results herein is that under the action of periodic water waves, fluid particles on an impermeable rippled bed initially moved back and forth around the ripple crest, with increasing vertical distance from the rippled wall. After one or two wave periods, they are then lifted towards the next ripple crest. All of the marked particles on a permeable rippled bed were shifted onshore with a much larger displacement than those on an impermeable bed. Finally, the flow fields and the particle motions close to impermeable and permeable beds induced by a solitary wave are elucidated.  相似文献   
16.
Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results.  相似文献   
17.
VTI介质中准P波方程叠前逆时深度偏移   总被引:3,自引:0,他引:3       下载免费PDF全文
根据具有垂直对称轴的横向各向同性(VTI)介质中的一阶准P波方程,导出了该方程在交错网格中逆时延拓的高阶有限差分格式,给出了其稳定性条件,采用完全匹配层吸收边界条件解决边界反射问题,分别应用下行波最大能量法和归一化互相关成像条件, 实现了VTI介质中准P波方程的叠前逆时深度偏移.各向异性Marmousi模型的试算结果表明,VTI介质准P波方程叠前逆时深度偏移算法不受地下构造倾角和介质横向速度变化的限制,对复杂模型具有良好的成像能力;应用归一化互相关成像条件能得到更好的成像效果.对比该模型的各向异性和各向同性逆时偏移剖面表明,在各向异性地区采集的纵波数据用各向异性偏移算法理论上能得到更好的成像结果.   相似文献   
18.
Discontinuous Galerkin methods for modeling Hurricane storm surge   总被引:1,自引:0,他引:1  
Storm surge due to hurricanes and tropical storms can result in significant loss of life, property damage, and long-term damage to coastal ecosystems and landscapes. Computer modeling of storm surge can be used for two primary purposes: forecasting of surge as storms approach land for emergency planning and evacuation of coastal populations, and hindcasting of storms for determining risk, development of mitigation strategies, coastal restoration and sustainability.Storm surge is modeled using the shallow water equations, coupled with wind forcing and in some events, models of wave energy. In this paper, we will describe a depth-averaged (2D) model of circulation in spherical coordinates. Tides, riverine forcing, atmospheric pressure, bottom friction, the Coriolis effect and wind stress are all important for characterizing the inundation due to surge. The problem is inherently multi-scale, both in space and time. To model these problems accurately requires significant investments in acquiring high-fidelity input (bathymetry, bottom friction characteristics, land cover data, river flow rates, levees, raised roads and railways, etc.), accurate discretization of the computational domain using unstructured finite element meshes, and numerical methods capable of capturing highly advective flows, wetting and drying, and multi-scale features of the solution.The discontinuous Galerkin (DG) method appears to allow for many of the features necessary to accurately capture storm surge physics. The DG method was developed for modeling shocks and advection-dominated flows on unstructured finite element meshes. It easily allows for adaptivity in both mesh (h) and polynomial order (p) for capturing multi-scale spatial events. Mass conservative wetting and drying algorithms can be formulated within the DG method.In this paper, we will describe the application of the DG method to hurricane storm surge. We discuss the general formulation, and new features which have been added to the model to better capture surge in complex coastal environments. These features include modifications to the method to handle spherical coordinates and maintain still flows, improvements in the stability post-processing (i.e. slope-limiting), and the modeling of internal barriers for capturing overtopping of levees and other structures. We will focus on applications of the model to recent events in the Gulf of Mexico, including Hurricane Ike.  相似文献   
19.
A wetting and drying method for free-surface problems for the three-dimensional, non-hydrostatic Navier–Stokes equations is proposed. The key idea is to use a horizontally fixed mesh and to apply different boundary conditions on the free-surface in wet and dry zones. In wet areas a combined pressure/free-surface kinematic boundary condition is applied, while in dry areas a positive water level and a no-normal flow boundary condition are enforced. In addition, vertical mesh movement is performed to accurately represent the free-surface motion. Non-physical flow in the remaining thin layer in dry areas is naturally prevented if a Manning–Strickler bottom drag is used. The treatment of the wetting and drying processes applied through the boundary condition yields great flexibility to the discretisation used. Specifically, a fully unstructured mesh with any finite element choice and implicit time discretisation method can be applied. The resulting method is mass conservative, stable and accurate. It is implemented within Fluidity-ICOM [1] and verified against several idealized test cases and a laboratory experiment of the Okushiri tsunami.  相似文献   
20.
Moment equation methods are popular and powerful tools for modeling transport processes in randomly heterogeneous porous media, but the application of these methods to advection-dispersion equations often leads to erroneous oscillations. Perturbative methods, required to close systems of moment equations, become inaccurate for large perturbations; however, little quantitative theory exists for determining when this occurs for advection-dispersion equations. We consider three different methods (asymptotic approximation, Eulerian truncation, and iterative solution) for closing and solving advection-dispersion moment equations describing transport in stratified porous media with random permeability. We obtain approximate analytical expressions for time above which the asymptotic approximation to the mean diverges, in particular quantifying the impact that dispersion has on delaying—but not eliminating—divergence. We demonstrate that Eulerian truncation and iterative solution methods do not eliminate divergent behavior either. Our divergence criteria provide a priori estimates that signal a warning to the practitioner of stochastic advection-dispersion equations to carefully consider whether to apply perturbative approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号